

Subscriber access provided by ISTANBUL TEKNIK UNIV

New Farnesane Sesquiterpenes from Hebeloma senescens

Maurizio Bocchi, Luigi Garlaschelli, Giovanni Vidari, and Giorgio Mellerio

J. Nat. Prod., 1992, 55 (4), 428-431• DOI: 10.1021/np50082a004 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50082a004 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

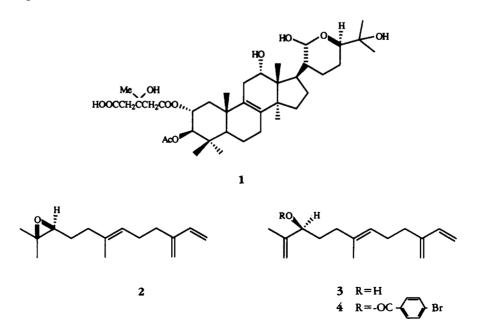
Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

NEW FARNESANE SESQUITERPENES FROM HEBELOMA SENESCENS¹

MAURIZIO BOCCHI, LUIGI GARLASCHELLI, GIOVANNI VIDARI,*

Dipartimento di Chimica Organica, Università di Pavia, V. le Taramelli 10, 27100 Pavia, Italy

and GIORGIO MELLERIO


CGS, Laboratorio di Spettrometria di Massa, Università di Pavia, 27100 Pavia, Italy

ABSTRACT.—Two farnesane derivatives have been isolated from the inedible mushroom *Hebeloma senescens* and have been identified as (E)-2,3-epoxy-2,6-dimethyl-10-methylene-6,11-dodecadiene [2] and (3S)-(E)-2,6-dimethyl-10-methylene-1,6,11-dodecatrien-3-ol [3]. This is the first report of farnesane sesquiterpenes in the Basidiomycetes.

The genus *Hebeloma* (Basidiomycetes, family Cortinariaceae) is a relatively large group of mushrooms comprising many inedible or toxic species growing in Italian woods during late summer and autumn. Some years ago we isolated a new cytotoxic triterpene, hebelomic acid A [1], from *Hebeloma crustuliniforme* and *Hebeloma sinapizans* (1). Japanese researchers have isolated numerous cucurbitane triterpene glycosides, called hebevinosides, from the poisonous mushroom *Hebeloma vinosophyllum* (2,3).

In the course of studies on biologically active substances from Basidiomycetes (4), we have found that a crude extract of *Hebeloma senescens* (Fr.) Berk. et Br. (syn. *Hebeloma* edurum Metr. ex Bon), growing in the forests of the Italian Apennines, exhibited moderate antibacterial activity against *Bacillus subtilis* and *Staphylococcus aureus* var. oxford. In addition, *H. senescens* has an unpleasant bitter taste and causes, if ingested, severe gastrointestinal diseases.

An EtOAc extract of H. senescens was separated by chromatography into nonpolar and polar fractions. The latter contained large quantities of hebelomic acid A [1] and

¹Communication No. 27 in the series "Fungal Metabolites." For Part 26 see M. De Bernardi, L. Garlaschelli, L. Toma, G. Vidari, and P. Vita-Finzi, *Tetrabedron*, **47**, 7109 (1991).

April 1992]

other as yet unidentified polyhydroxy lanostane triterpenes having free carboxylic acid functions. These compounds show weak antibacterial activity against Gram-positive bacteria. The more lipophilic fractions were further purified by repeated cc to yield a mixture of triglycerides, saturated and unsaturated free fatty acids, and the two sesquiterpenes 2 and 3 as a colorless oil.

Sesquiterpenoid 2, $[\alpha]^{20}D + 1.87$, had a molecular formula $C_{15}H_{24}O$ (ms and ^{13}C nmr) that required four sites of unsaturation. From the ¹³C-nmr data and ir spectrum of 2, which exhibited no band for hydroxyl or carbonyl groups, the four sites were assigned to one ether ring and three double bonds. From the ¹H-nmr spectrum it was evident that the latter comprised one trisubstituted double bond carrying a methyl group (δ 1.62), a vinyl group (ABX pattern at δ 5.05, 5.23, and 6.37) and one terminal methylene group (broad singlets at δ 4.98 and 5.00). These features coupled with the ir (1630, 1590, 985, and 890 cm⁻¹) and uv (223 nm) absorption data, comparable with those previously reported for (E)- β -farnesene (5,6), indicated a conjugated diene structure for 2. The remaining ¹H-nmr signals and ¹³C-nmr data of 2 were assigned to three allylic and one homoallylic methylene groups, two geminal methyls, and one proton on an oxirane ring (δ 2.70). These data were fully consistent with the structural features of a farnesane skeleton and allowed placement of the epoxide ring at C-2. Moreover, spindecoupling experiments showed that the trisubstituted double bond was between C-6 and C-7 rather than between C-5 and C-6. In fact, irradiation of the multiplet attributed to the allylic methylene groups (δ 2.0–2.25) collapsed the signal of the olefinic proton (δ 5.20) but not the H-3 triplet which, instead, was collapsed to a singlet by irradiation of the multiplet assigned to the H-4 protons (δ 1.55–1.7). The stereochemistry of the double bond was determined to be E from the chemical shifts of the olefinic methyl group in the ¹H nmr (δ 1.62) (7) and ¹³C nmr (δ 16.06) (8) spectra of compound 2. Therefore 2 is shown to be (E)- β -10, 11-dihydro-10, 11-epoxyfarnesene.

The alcohol 3, $[\alpha]^{20}D - 7.31$, which the ms and nmr indicated was an isomer of 2, contained the same conjugated diene structure (λ max 224 nm). Inspection of the ¹H- and ¹³C-nmr spectra of 3 showed that, with the exception of the signals near C-3, the data were almost identical with those of compound 2, suggesting that only modification of the oxirane ring had occurred. The signal of an additional olefinic methyl (δ 1.73), coupled with those of a secondary allylic alcohol (δ 4.05) and a vinylic methylene group (broad singlets at δ 4.84 and 4.94), clearly indicated that 3 was (E)-2,6-dimethyl-10-methylene-1,6,11-dodecatrien-3-ol.

Treatment of epoxide 2 with aluminum isopropoxide in boiling toluene (9) smoothly gave isomeric allylic alcohol 3 which was identical with the natural compound. Finally, the absolute stereochemistry at C-3 was established by applying the Nakanishi and Sharpless cd exciton chirality method for determining absolute configurations of acyclic allylic alcohols (10). The cd spectrum of the *p*-Br-benzoate 4 exhibited a positive Cotton effect ($\Delta \epsilon + 1.53$) at 237 nm, the sign of which showed that the absolute configuration of compound 3 must be S.

To the best of our knowledge this is the first report of the isolation of sesquiterpenoids 1 and 2 from a natural source. Racemic 3 was obtained during the synthesis of β -sinensal (11), but spectral data have not been reported. Farnesane sesquiterpenes have not yet been found in any other species of Basidiomycetes. Furthermore, this is the first finding of sesquiterpenoid compounds in *Hebeloma*. Their occurrence in *H. senes*cens, which has triterpenes as major constituents, suggests a farnesyl or nerolidyl intermediate in the biosynthesis of these C₃₀ metabolites.

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES .- The ir spectra were recorded with a Perkin-Elmer

Proton	Compound		Carbon	Compound	
	2°	3 ^d		2	3
H -1	1.30 s	4.84 qu ^e 4.94 se ^f	C-1	24.9(3) 58.4(0)	111.1(2) 147.5(0)
H-3 H-4	2.70 t 1.55–1.7 m	4.05 t 1.62–1.70 m	C-3	64.2(1) 27.5 ^h (2)	75.7(1) 33.2 ^h (2)
H-5	2.0–2.25 m 5.20 m	1.95–2.11 m 5.20 m	C-5	36.3(2) 134.5(0)	35.7 ^h (2) 135.2(0)
H-8 H-9	2.15–2.25 m	2.15–2.29 m	C-7	124.7(1) 26.6 ^h (2)	124.5 (1) 26.6 (2)
H-11	6.37 dd	6.37 dd	C-9	31.4(2)	31.4(2)
H-12 H-12'	5.05 d ^ø 5.23 dd	5.06 d ^g 5.24 dd	C-10	146.0(0) 138.9(1)	146.1(0) 139.0(1)
H-13 H-13'	4.98 bs 5.00 bs	4.99 bs 5.02 bs	C-12	115.6(2) 113.1(2)	115.8(2) 113.1(2)
H-14 H-15	1.62 bs 1.26 s	1.62 d 1.73 t	C-14 C-15	16.06(3) 18.8(3)	16.06(3) 17.6(3)

TABLE 1. ¹H-nmr^a and ¹³C-nmr^b Spectral Data for Compounds 2 and 3.

^a250 MHz. δ_H values in ppm, relative to $\delta_H = 0.00$ for TMS in CDCl₃ solutions.

^b62.9 MHz (CDCl₃). Values in ppm, relative to $\delta_c = 76.9$ for CDCl₃. The number in parentheses indicates the number of hydrogens attached to the corresponding carbon and was determined from DEPT experiments.

 ${}^{c}J_{3,4} + J_{3,4'} = 12; J_{11,12} = 10.5; J_{11,12'} = 17.5; J_{12,12'} = 1.3.$ ${}^{d}J_{3,4} + J_{3,4'} = 13; J_{11,12} = 10.5; J_{11,12'} = 17.5; J_{12,12'} = 1.3; J_{14,7} = 1.2; J_{15,1} = 1.2.$ ${}^{e}qu = quintet (J = 1.6).$ ${}^{f}se = sextuplet (J = 1.0).$

⁸Each line of the doublet is further split into a quarter by geminal and long range coupling constants $(J \simeq 1.1)$.

^hAssignments in the same vertical column may be interchanged.

Model 881 spectrophotometer; uv spectra were obtained with a Perkin-Elmer Lambda 5 spectrometer; ¹H-nmr and ¹³C-nmr spectra were recorded on a Bruker 250 MHz instrument. Ms spectra were determined with a Finnigan MAT 8222 mass spectrometer at 70 eV using a direct inlet system. Specific optical rotations were recorded with a Perkin-Elmer model 241 digital polarimeter. Cd spectra were obtained with a Jasco L 500 A spectropolarimeter. Merck Kieselgel 60 (0.040–0.063 mm) was used for cc run at atmospheric pressure. Tlc was carried out on Si gel plates (GF₂₅₄, Merck, 0.25 mm). The spots were visualized by spraying the plates with 0.5% vanillin solution in H₂SO₄-EtOH (4:1) and then heating at 120° for 5 min.

FUNGAL MATERIAL.—*H. senescens* (15.6 kg) was collected at Pietragavina (Pavia) in November 1984, and was identified by Dr. Livio Quadraccia, University of Rome. A voucher specimen is preserved at the Herbarium of the Botanical Garden, University of Rome (ROHB).

EXTRACTION AND ISOLATION.—The fresh fruiting bodies of *H. senescens* were extracted with EtOAc (3×20 h) at room temperature, a few hours after collection. The extract was dried (Na₂SO₄) and concentrated to yield a solid brown residue (114.7 g). Part of the latter (85.3 g) was chromatographed on Si gel (1.1 kg) using a CH₂Cl₂/Me₂CO/HOAc gradient and collecting fractions of 300–400 ml each. Fractions were pooled into 16 groups (I-XVI) according to tlc analysis. Compounds 2 and 3 were present in fractions V and VI. The former (200 mg) was further purified by two consecutive Si gel cc's [A: hexane-Me₂CO (99:1), B: hexane-EtOAc (98:2)] to give sesquiterpene 2 (16 mg) as a colorless viscous oil, a mixture of triglycerides and an unidentified red pigment. Fraction VI (112 mg) was purified by three consecutive Si gel cc's [A: hexane-EtOAc (98:2) \rightarrow 90:10), B: hexane-CH₂Cl₂-Me₂CO (59:39:2), C: hexane-CH₂Cl₂-Me₂CO (60:36:4)] to give more 2 (17.4 mg) and the alcohol 3 (9.1 mg) as a colorless viscous oil.

(E)-2,3-Epoxy-2,6-dimetbyl-10-metbylene-6,11-dodecadiene [2].— R_f 0.25 in hexane-EtOAc (97:3); [α]²⁰D + 1.87 (CH₂Cl₂, c = 0.8); ir ν max (film) 3092, 1632, 1594, 1460, 1376, 1323, 1247, 1123, 991, 898 cm⁻¹; uv λ max (ϵ) (hexane) 223.4 nm (10800); ¹H and ¹³C nmr see Table 1; eims m/z (% rel. int.) [M]⁺ 220 (0.3), 134 (33), 127 (19), 119 (19), 109 (19), 105 (10), 93 (100), 91 (18), 85 (27), 81 (38), 79 (24), 71 (50), 69 (14), 67 (15), 59 (22), 55 (17), 43 (67), 41 (30). $(3S)-(E)-2, 6-dimetbyle-10-metbylene-1, 6, 11-dodecatrien-3-ol [3]. --R_f 0.53 in hexane-CH₂Cl₂-Me₂CO (60:35:5); [<math>\alpha$]²⁰D -7.31 (CH₂Cl₂, c = 0.4); ir ν max (film) 3364, 1594, 1466, 1385, 1159, 1059, 1018, 991, 896, 831; uv λ max (ϵ) (hexane) 224 nm (9858); ¹H and ¹³C nmr see Table 1; eims m/z (% rel. int.) [M]⁺ 220 (0.7), 205 (0.5), 202 (2.1), 187 (7), 159 (9), 146 (20), 133 (20), 120 (22), 119 (24), 109 (20), 107 (24), 105 (19), 93 (100), 91 (35), 81 (28), 79 (38), 77 (19), 71 (24), 69 (31), 67 (34), 55 (39), 43 (29), 41 (54).

ALUMINUM ISOPROPOXIDE ISOMERIZATION OF EPOXIDE 2 TO ALLYLIC ALCOHOL 3.—A mixture of the epoxy compound 2 (10 mg, 0.045 mmol) and aluminum isopropoxide (260 μ l of a 0.23 M solution in dry C₆H₅CH₃) in C₆H₅CH₃ (0.5 ml) was heated under reflux for 6 h under an Ar atmosphere. After cooling to room temperature, the reaction mixture was diluted with hexane and treated with 10% HCl to decompose the aluminum complex. The organic layer was separated, washed with 5% NaHCO₃, washed with brine, dried (MgSO₄), and evaporated in vacuo. The residue was chromatographed with hexane-EtOAc (12:1) on Si gel to give the desired allylic alcohol 3 (3.1 mg, yield 31%), identical (R_{fi} ir and ¹H nmr) with the natural compound.

p-Br-BENZOATE OF ALLYLIC ALCOHOL 3.—A mixture of the allylic alcohol 3 (7.1 mg, 0.032 mmol), *p*-Br-C₆H₄COCl (10.5 mg, 0.048 mmol), Et(iPr)₂N (8.5 μ l, 0.084 mmol), and DMAP (1 mg) in dry CH₂Cl₂ (0.5 ml) was heated under reflux for 4 h under an Ar atmosphere. After cooling to room temperature, the reaction was quenched with H₂O (50 μ l), and the mixture was passed with CH₂Cl₂ through activity III neutral Al₂O₃ (200 mg). After removal of solvent, the residue was chromatographed with hexane-EtOAc (98:2) on Si gel to give the *p*-Br-benzoate 4 (9.6 mg, 68.6%); uv λ max (ϵ) (MeOH) 237 nm (+1.53); cims (CH₄) *m*/z [M + H]⁺ 405 and 403; ¹H nmr (CDCl₃, 300 MHz) 1.64 (3H, s), 1.79 (3H, s), 1.7–2.30 (8H, m), 4.94 (1H, bs), 4.98 (1H, bs), 5.02 (2H, bs), 5.05 (1H, d, *J* = 10.8 Hz), 5.16 (1H, m), 5.23 (1H, d, *J* = 17.7 Hz), 5.37 (1H, t, *J* = 7.0 Hz), 6.36 (1H, dd, *J* = 10.8 and 17.7 Hz), 7.75 (4H, AA'XX' system).

ACKNOWLEDGMENTS

The authors are grateful to Dr. Livio Quadraccia, University of Rome for identification of the mushrooms and Dr. Vecchio, Istituto di Chimica degli Ormoni, Milan, for recording the cd spectra. The studies have been supported by grants from MURST (40%) and CNR (Progetto Finalizzato Chimica fine e secondaria).

LITERATURE CITED

- 1. M. De Bernardi, G. Fronza, M.P. Gianotti, G. Mellerio, G. Vidari, and P. Vita-Finzi, *Tetrabedron Lett.*, 24, 1635 (1983).
- 2. H. Fujimoto, K. Suzuki, H. Hagiwara, and M. Yamazaki, Chem. Pharm. Bull., 34, 88 (1986).
- 3. M. Fujimoto, H. Hagiwara, K. Suzuki, and M. Yamazaki, Chem. Pharm. Bull., 35, 2254 (1987).
- M. De Bernardi, L. Garlaschelli, G. Vidari, P. Vita-Finzi, and V. Caprioli, *Rev. Latinoam. Quim.*, 20, 57 (1989).
- 5. Y.-R. Naves, Helv. Chim. Acta, 49, 1029 (1966).
- 6. K.E. Murray, Aust. J. Chem., 22, 197 (1969).
- 7. R.B. Bates, D.M. Gale, and B.J. Gruner, J. Org. Chem., 28, 1086 (1963).
- L.F. Johnson and W.C. Jankowski, "Carbon-13 NMR Spectra: A Collection of Assigned, Coded and Indexed Spectra," Wiley-Interscience, New York, 1972, p. 497.
- 9. S. Terao, M. Shiraishi, and K. Kato, Synthesis, 467 (1979).
- 10. N.C. Gonnella, K. Nakanishi, V.S. Martin, and K.B. Sharpless, J. Am. Chem. Soc., 104, 3775 (1982).
- 11. T. Mimura, Y. Kimura, and T. Nakai, Chem. Lett., 1361 (1979).

Received 1 July 1991